Linear Algebra in Economics: The Leontief Input-Output Model Christian Shadis

Goal: Optimize production levels to meet total demand, taking into account demand created by productive sectors of the economy

ns/3/36/W

Preliminary Terms and Definitions

Productive sector: Any sector of the economy that produces a good or service

Open Sector: Any sector of the economy that merely consumes goods or services without producing them

Final Demand (d): The values of the goods and services demanded by the open sectors of the economy (i.e. consumer demand

Intermediate Demand: The values of the goods and services demanded by the productive sectors of the economy

Total Demand: The sum of final and intermediate demand

<u>Unit Consumption Vector</u> ($c_1, c_2, ..., c_n$): A list of input values from *n* sectors needed by a particular sector, per unit of output

Consumption Matrix (C): Matrix representation of the unit consumption vectors of every sector in the economy

- · Create, understand, interpret vectors and matrices
- Represent given data in these forms
 Vector and matrix algebra (addition, subtraction, multiplication)
- Construct the identity matrix for any \mathbb{R}^n
- Solve, manipulate vector equations
- Namely, solving for x in Leontief's Model
- Row reduction to a Reduced Row Echelon Form (solving a linear system of equations)
- In some cases, inversion of a matrix is an alternative solution

Theorem 11 and its Consequences

Theorem 11: Alternate Form of Leontief's Model ¹

For a consumption matrix **C** of a given economy and final demand **d**, if C and d have non-negative entries and each column sum of C is less than 1, then (I-C)⁻¹ exists, and

 $\mathbf{x} = (\mathbf{I}-\mathbf{C})^{-1} \cdot \mathbf{d}$ Where x has non-negative entries and is the unique solution to Leontief's Model

Lay, D. C., Lay, S. R., McDonald, J., (2016). 2.6 The Leontief Input-Output Model. In Linear algebra and its applications, fifth edition. Boston: Pearson.

Notes on Theorem 11:

- · The prerequisite conditions will nearly always be met in any feasible, real-world application
- (I-C)⁻¹ ≈ I + C + C² + C³ + ... + C^m, where C^m denotes the consumption matrix at the *m*th "round" of intermediate demand - C^m approaches the zero matrix relatively quickly, so this is a practical way to estimate (I-C)⁻¹
- Entries of this matrix can be used to predict the change in production x when the final demand d changes

Real – World Application

The following table is based on actual data from the US economy in 1958:

*Units: millions of USD	Units of Input Consumed per Unit of Output									
Purchased from:	NMH	FMP	BMP	BNMPA	Energy	Services	MISC			
Nonmetal household and personal products (NMH)	0.1588	0.0064	0.0025	0.0304	0.0014	0.0083	0.1594			
Final metal products (FMP)	0.0057	0.2645	0.0436	0.0099	0.0083	0.0201	0.3413			
Basic metal products / mining (BMP)	0.0264	0.1506	0.3557	0.0139	0.0142	0.0070	0.0236			
Basic nonmetal products and agriculture (BNMPA)	0.3299	0.0565	0.0495	0.3636	0.0204	0.0483	0.0649			
Energy	0.0089	0.0081	0.0333	0.0295	0.3412	0.0237	0.0020			
Services	0.1190	0.0901	0.0996	0.1260	0.1722	0.2368	0.3369			
Entertainment/Misc. (MISC)	0.0063	0.0126	0.0196	0.0098	0.0064	0.0132	0.0012			
Interpretation example: For 1 unit of Energy (i.e. to produce \$1M in energy), the	sector requires	0.0083 units (i.e. \$8,300) wa	orth of fine met	al products					

	ſ.1588	.0064	.0025	.0304	.0014	.0083	.1594
	.0057	.2645	.0436	.0099	.0083	.0201	.3413
	.0264	.1506	.3557	.0139	.0142	.0070	.0236
C =	.3299	.0565	.0495	.3636	.0204	.0483	.0649
	.0089	.0081	.0333	.0295	.3412	.0237	.0020
	.1190	.0901	.0996	.1260	.1722	.2368	.3369
	L.0063	.0126	.0196	.0098	.0064	.0132	.0012

Note: Each column is a *unit consumption vector* The sum of the entries of each column is less than 1, and all entries are positive Assuming all values in **d** are non-negative, this matrix is invertible and Theorem 11 holds

We know that d = (I-C)x, and simplification of the matrix subtraction yields the following relationship between x and d:

	.8412	0064	0025	0304	0014	0083	1594	
	0057	.7355	0436	0099	0083	0201	3413	
	0264	1506	.6443	0139	0142	0070	0236	
=	3299	0565	0495	.6364	0204	0483	0649	• x
	0089	0081	0333	0295	.6588	0237	0020	
	1190	0901	0996	1260	1722	.7632	3369	
	L0063	0126	0196	0098	0064	0132	.9988]	

					The	Ide	ntity Matrix
		r1	0	0		0	1
		0	1	0		0	
· X	$I^n =$	0	0	1		0	, where n is the number of columns
		Ξ.	1	÷	N.,	- 1	
		Lo	0	0		1-	

Solve for x using the following given d

/4,000 -		[.8412	0064	0025	0304	0014	0083	1594	
56,000		0057	.7355	0436	0099	0083	0201	3413	
10,500		0264	1506	.6443	0139	0142	0070	0236	
25,000	=	3299	0565	0495	.6364	0204	0483	0649	• x
17,500		0089	0081	0333	0295	.6588	0237	0020	
96,000		1190	0901	0996	1260	1722	.7632	3369	
5,000		0063	0126	0196	0098	0064	0132	.9988	

To solve for x, create an augmented matrix with d as the final column, and row reduce to the Reduced Row Echelon Form. This now becomes a simple linear system of equations.

[.8412	0064	0025	0304	0014	0083	1594	74000		<u>۲</u> 1	0	0	0	0	0	0	ן 99575.65
0057	.7355	0436	0099	0083	0201	3413	56000		0	1	0	0	0	0	0	97703.02
0264	1506	.6443	0139	0142	0070	0236	10500		0	0	1	0	0	0	0	51230.52
3299	0565	0495	.6364	0204	0483	0649	25000	~	0	0	0	1	0	0	0	131569.92
0089	0081	0333	0295	.6588	0237	0020	17500		0	0	0	0	1	0	0	49488.49
1190	0901	0996	1260	1722	.7632	3369	196000		0	0	0	0	0	1	0	329554.45
L0063	0126	0196	0098	0064	0132	.9988	5000		Lo	0	0	0	0	0	1	13835.34

Conclusion: in order to fulfill the given total demand, each sector must produce the following amounts (in millions USD):

NMH FMP BMP Energy Services MISC 99576 97703 51231 131570 49488 329557 13835

Informational and data source: Lay, D. C., Lay, S. R., McDonald, J., (2016). 2.6 The Leontief Input-Output Model. In Linear algebra and its applications, fifth edition. Boston: Pearson.