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The Problem

Melanoma is a rare form of skin cancer that accounts for most skin-

cancer-related deaths. Given a set of approximately 2700 images of

benign and malicious skin lesions, can we develop a convolutional
neural network to detect melanoma with 70% accuracy?
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CNNs: Convolutional Layers

« Foundation of Convolutional Neural Networks
« What separates CNNs from other Machine Learning models
« Purpose: extract high-level features from an image
* Method:
« lterate a small ‘window’ over our image
Window (a.k.a. filter’, ‘kernel’) has a (random) decimal value at
each pixel
Each pixel multiplied with kernel value corresponding, add all
products
Window shifts to next pixel
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Values in the kernel are determined with the Xavier Glorot initialization
* Random distribution dependent on the size of multiple layers in the

network
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CNNs: Other Layers

Input Layer: Image represented as 256 x 256 x 3 image

Convolution Layers: Extract patterns and important features

Max-pool Layers: Retain most impactful features

Dropout Layers: Randomly deactivate neurons (reduce overfitting)

Flatten Layers: Reduces dimensionality from 3 to 1

Dense Layers: traditional neural network structure

Sigmoid Dense Layer: calculate probability of match for each class
« Transforms data to interval [0, 1] and select corresponding class

* Ex.[0.01, 0.99] would select class 1 (melanoma) as the prediction for the input

Output Layer: Vector containing predicted class of image

« Ex[0,1]

Final Model Structure
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NNs: Paramete

Optimizer Learning Rate: Extremity of weight adjustments per iteration

Batch Size: How many images are fed to the model simultaneously
Activation Function: Functions that find nonlinear patterns in data
Epochs: Number of training iterations

Sample Size: Number of images in training dataset

Activation Functions: ReLU, LeakyReLU, Sigmoid, Tanh




