Air Quality Analysis: 2000 - 2021

Air Quality Index

- Measure of air pollution
- Four major pollutants:
 - CO
 - NO2
 - SO2
 - 03

- Higher measures of AQI = more pollution = worse air quality

1. Data Structure

Data Structure

- Features:
 - Date (Year, Month, Day)
 - Location (Address, County, State)
 - Each Pollutant, Each Day:
 - Mean/Max
 - Time of Day of Max
 - AQI
- Observations:
 - Recorded daily in select locations for 2000 2021

Preprocessing

Data was already very tidy and required very little manipulation

- Pollutant AQI -> Total AQI
- Binned AQI:
 - "Moderate", "At-Risk", "Unhealthy", "Very Unhealthy", "Hazard"
- Multiple daily readings (duplicates)
 - Aggregated means and consolidated to one obs

2. Visualizations

Changes of Pollutants, 2000-2021 in Los Angeles, CA

- 1. Each pollutant, 2000-2021
- 2. Each pollutant, 2020
 - a. Yearly cycle

O3 / NO2

O3 Pollution 2000-2021

NO2 Pollution 2000-2021

SO2 / CO

SO2 Pollution 2000-2021

CO Pollution 2000-2021

O3 / NO2 2020

O3 Pollution 2020 0.12 60 0.09 NO2 Mean (ppm) O3 Mean (ppm) 0.03 0.00 Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021 Jan 2020 ~Date

NO2 Pollution 2020

SO2 / CO

SO2 Pollution 2020

Mapping Air Quality in US

- Process
 - Simultaneously create leaflet maps for each year
 - Average AQI per state per year
 - AQI measurements (by pollutant, total)
 - Base group control
 - Auto-updating legend
 - Indicator of total AQI ("mild", "hazard", etc)

1/4/

1/5/

TAKEAWAY

The air quality in the United States seems to have improved, indicating the possibility of climate initiative success

3. Statistical Analysis

AQI Distribution Change Over Time

2003 median AQI > 2018 3q

Does NY have worse SO2 AQI than TX?

- Texas has the most fossil fuel power plants in US
- Adirondacks in NY known to have acid rain (caused by SO2 pollution)
 - Thanks BIO-101
- Non-parametric test used:
 - Mann Whitney U-test
 - 1-tailed
 - 99% Confidence

Null: $\mu_{NY} == \mu_{TX}$ Alt: $\mu_{NY} > \mu_{TX}$ W-statistic: 5.7x10⁸ P-Value: 2.2x10⁻¹⁶ **Reject the Null Hypothesis New York has a higher average SO2 than Texas**

Correlation Between Pollutants

- Few interactions between pollutants
 - NO2 and CO moderate positive
 - O3 and NO2 larger cor with AQI

Clustering

Which states are most similar

- Considering all pollutants
- K-means & Hierarchical
 - k=3

Results

map_df[, values] 1 2

- No obvious patterns
- K-means produced more balanced clusters

Regression: Mean or Max to predict?

- Method: Multiple Linear Regression
 - Predictors: Avgs/Maxs of each pollutant
 - **Max value** of pollutants is a better predictor of overall AQI than the average value
- Max Value Model: Adj $R^2 = 0.9376$
- Mean Value Model: Adj $R^2 = 0.7678$
- Hypothesis: Max will outperform min when used to predict

Regression Prediction Results

- Maximum AQI a great predictor
 - Using 80/20 split
 - 98.9% of predictions within 1 s.d. of AQI
 - 96.8% of predictions within ½ s.d. of AQI
 - 82.2% of predictions within ¼ s.d. of AQI
- Mean AQI an okay predictor
 - Using 80/20 split
 - 96.0% of predictions within 1 s.d. of AQI
 - 78.6% of predictions within ½ s.d. of AQI

Classification: Rural or Urban?

Urban state: >70% urban population
Logistic Regression

% Split	Classification Accuracy
50/50	62.3%
75/25	61.2%
80/20	62.1%
90/10	62.4%

Future Work

- Deploy shiny server with time slider instead of 21 separate leaflet maps
- Examine relationship with geographic power plant distribution
- Examine on a city level instead of state
 - Is it a city or a town based on pollution?

Tools

R Programming language

- Tidyverse (https://www.tidyverse.org/)
- Usmap (https://cran.r-project.org/web/packages/usmap/usmap.pdf)
- Sf (https://cran.r-project.org/web/packages/sf/sf.pdf)
- Spdata (https://www.rdocumentation.org/packages/spData/versions/2.0.1)
- **Ggmap** (https://cran.r-project.org/web/packages/ggmap/ggmap.pdf)
- Corrplot (https://www.rdocumentation.org/packages/corrplot/versions/0.92/topics/corrplot)
- Wilcox test

Refs

Data:

https://www.kaggle.com/datasets/alpacanonymous/us-pollution-20002021 https://www2.census.gov/geo/docs/reference/ua/PctUrbanRural_State.xls Other:

https://www.epa.gov/so2-pollution/sulfur-dioxide-basics

https://www.statista.com/statistics/1248106/so2-most-pollut ing-power-plants-united-states/

https://statsandr.com/blog/wilcoxon-test-in-r-how-to-compare -2-groups-under-the-non-normality-assumption/

https://www2.census.gov/geo/docs/reference/ua/PctUrbanR ural_State.xls